Assessing the Capability of a Downscaled Urban Land Surface Temperature Time Series to Reproduce the Spatiotemporal Features of the Original Data
نویسندگان
چکیده
The downscaling of frequently-acquired geostationary Land Surface Temperature (LST) data can compensate the lack of high spatiotemporal LST data for urban climate studies. In order to be usable, the generated datasets must accurately reproduce the spatiotemporal features of the coarse-scale LST time series with greater spatial detail. This work concerns this issue and exploits the high temporal resolution of the data to address it. Specifically, it assesses the accuracy, correct pattern formation and the spatiotemporal inter-relationships of an urban three-month-long downscaled geostationary LST time series. The results suggest that the downscaling process operated in a consistent manner and preserved the radiometry of the original data. The exploitation of the data inter-relationships for evaluation purposes revealed that the downscaled time series reproduced the smooth diurnal cycle, but the autocorrelation of the downscaled data was higher than the original coarse-scale data. Overall, the evaluation process showed that the generation of high spatiotemporal LST data for urban areas is very challenging, and to deem it successful, it is mandatory to assess the temporal evolution of the urban thermal patterns. The results suggest that the proposed tests can facilitate the evaluation process.
منابع مشابه
Spatiotemporal analysis of remotely sensed Landsat time series data for monitoring 32 years of urbanization
The world is witnessing a dramatic shift of settlement pattern from rural to urban population, particularly in developing countries. The rapid Addis Ababa urbanization reflects this global phenomenon and the subsequent socio-economic and environmental impacts, are causing massive public uproar and political instability. The objective of this study was to use remotely sensed Landsat data to iden...
متن کاملRevealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)
Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...
متن کاملImpact of urban land cover change on land surface temperature
The rapid growth in urban population is seen to create a need for the development of more urban infrastructures. In order to meet this need, natural surfaces such as vegetation are been replaced with non-vegetated surfaces such as asphalt and bricks which has the ability to absorb heat and release it later. This change in land cover is seen to increase the land surface temperature. Previous stu...
متن کاملInvestigation of the effects of Covid-19 pandemic on UHI in urban, industrial and green spaces of Tehran
Investigation of the effects of Covid-19 pandemic on UHI in residential, industrial and green spaces of Tehran Abstract Rapid urbanization in recent decades has been a major driver of ecosystems and environmental degradation, including changes in agricultural land use and forests. Urbanization is rapidly transforming ecosystems into buildings that increase heat storage capacity. Loss of ve...
متن کاملMonitoring the earth surface temperature and relationship land use with surface temperature using of OLI and TIRS Image
Earth surface temperature is an important indicator in the study of energy equilibrium models at the ground level on a regional and global scale. Due to the limitation of meteorological stations, remote sensing can be an appropriate alternative to the Earth's surface temperature. The main objective of this study is to monitor the surface temperature and its relationship with land use, which is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016